Simple moving average eviews
Previsão por Técnicas de Suavização Este site é uma parte dos objetos de aprendizagem de JavaScript E-Labs para tomada de decisão. Outros JavaScript nesta série são classificados em diferentes áreas de aplicações na seção MENU nesta página. Uma série de tempo é uma seqüência de observações que são ordenadas no tempo. Inerente na coleta de dados levados ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. As técnicas amplamente utilizadas são suavização. Estas técnicas, quando devidamente aplicadas, revelam mais claramente as tendências subjacentes. Insira a série de tempo em ordem de linha em seqüência, começando pelo canto superior esquerdo e o (s) parâmetro (s) e, em seguida, clique no botão Calcular para obter uma previsão de um período antecipado. Caixas em branco não são incluídas nos cálculos, mas zeros são. Ao inserir seus dados para mover de célula para célula na matriz de dados use a tecla Tab não seta ou digite chaves. Características de séries temporais, que podem ser reveladas ao examinar seu gráfico. Com os valores previstos, eo comportamento residual, modelagem de previsão de condições. Médias móveis: As médias móveis classificam-se entre as técnicas mais populares para o pré-processamento de séries temporais. Eles são usados para filtrar o ruído branco aleatório dos dados, para tornar a série de tempo mais suave ou mesmo para enfatizar certos componentes informativos contidos na série de tempo. Suavização Exponencial: Este é um esquema muito popular para produzir uma Série de Tempo suavizada. Enquanto que em Médias Móveis as observações passadas são ponderadas igualmente, a Suavização Exponencial atribui pesos exponencialmente decrescentes à medida que a observação avança. Em outras palavras, observações recentes recebem relativamente mais peso na previsão do que as observações mais antigas. O Double Exponential Smoothing é melhor para lidar com as tendências. Triple Exponential Smoothing é melhor no manuseio de tendências de parabola. Uma média móvel exponencialmente ponderada com uma constante de suavização a. Corresponde aproximadamente a uma média móvel simples de comprimento (isto é, período) n, onde a e n estão relacionados por: a 2 / (n1) OR n (2 - a) / a. Assim, por exemplo, uma média móvel exponencialmente ponderada com uma constante de suavização igual a 0,1 corresponderia aproximadamente a uma média móvel de 19 dias. E uma média móvel simples de 40 dias corresponderia aproximadamente a uma média móvel exponencialmente ponderada com uma constante de suavização igual a 0,04878. Suavização Linear Exponencial de Holts: Suponha que a série de tempo não é sazonal, mas exibe tendência. Holts método estima tanto o nível atual ea tendência atual. Observe que a média móvel simples é caso especial da suavização exponencial, definindo o período da média móvel para a parte inteira de (2-Alpha) / Alpha. Para a maioria dos dados empresariais, um parâmetro Alpha menor que 0,40 é frequentemente eficaz. No entanto, pode-se realizar uma busca de grade do espaço de parâmetro, com 0,1 a 0,9, com incrementos de 0,1. Então o melhor alfa tem o menor erro médio absoluto (erro MA). Como comparar vários métodos de alisamento: Embora existam indicadores numéricos para avaliar a precisão da técnica de previsão, a abordagem mais ampla consiste na comparação visual de várias previsões para avaliar a sua precisão e escolher entre os vários métodos de previsão. Nesta abordagem, é necessário plotar (usando, por exemplo, Excel) no mesmo gráfico os valores originais de uma variável de série temporal e os valores previstos de vários métodos de previsão diferentes, facilitando assim uma comparação visual. Você pode gostar de usar as Previsões Passadas por Técnicas de Suavização JavaScript para obter os valores de previsão anteriores com base em técnicas de suavização que usam apenas um único parâmetro. Holt e Winters usam dois e três parâmetros, respectivamente, portanto, não é uma tarefa fácil selecionar os valores ótimos, ou mesmo próximos, ótimos por tentativa e erros para os parâmetros. A suavização exponencial única enfatiza a perspectiva de curto alcance que define o nível para a última observação e é baseada na condição de que não há tendência. A regressão linear, que se ajusta a uma linha de mínimos quadrados aos dados históricos (ou dados históricos transformados), representa a faixa de longo alcance, que está condicionada à tendência básica. Holts linear suavização exponencial captura informações sobre tendência recente. Os parâmetros no modelo de Holts são níveis-parâmetro que devem ser diminuídos quando a quantidade de variação de dados é grande, e as tendências-parâmetro devem ser aumentadas se a tendência de direção recente é apoiada pelo causal alguns fatores. Previsão de Curto Prazo: Observe que cada JavaScript nesta página fornece uma previsão de um passo adiante. Para obter uma previsão de duas etapas. Basta adicionar o valor previsto ao final dos dados de séries temporais e, em seguida, clicar no mesmo botão Calcular. Você pode repetir este processo por algumas vezes para obter as previsões de curto prazo necessárias. Movendo modelos de suavização média e exponencial Como um primeiro passo para ir além dos modelos de média, modelos de tendência aleatória e modelos de tendência linear, padrões e tendências não sazonais podem Ser extrapolado usando um modelo de média móvel ou suavização. A suposição básica por trás dos modelos de média e suavização é que a série temporal é localmente estacionária com uma média lentamente variável. Assim, tomamos uma média móvel (local) para estimar o valor atual da média e então usamos isso como a previsão para o futuro próximo. Isto pode ser considerado como um compromisso entre o modelo médio e o modelo aleatório-andar-sem-deriva. A mesma estratégia pode ser usada para estimar e extrapolar uma tendência local. Uma média móvel é muitas vezes chamado de uma versão quotsmoothedquot da série original, porque a média de curto prazo tem o efeito de suavizar os solavancos na série original. Ajustando o grau de suavização (a largura da média móvel), podemos esperar encontrar algum tipo de equilíbrio ótimo entre o desempenho dos modelos de caminhada média e aleatória. O tipo mais simples de modelo de média é o. Média Móvel Simples (igualmente ponderada): A previsão para o valor de Y no tempo t1 que é feita no tempo t é igual à média simples das observações m mais recentes: (Aqui e em outro lugar usarei o símbolo 8220Y-hat8221 para ficar Para uma previsão da série temporal Y feita o mais cedo possível antes de um determinado modelo). Esta média é centrada no período t (m1) / 2, o que implica que a estimativa da média local tenderá a ficar para trás Valor real da média local em cerca de (m1) / 2 períodos. Dessa forma, dizemos que a idade média dos dados na média móvel simples é (m1) / 2 relativa ao período para o qual a previsão é calculada: é a quantidade de tempo em que as previsões tendem a ficar atrás dos pontos de inflexão na dados. Por exemplo, se você estiver calculando a média dos últimos 5 valores, as previsões serão cerca de 3 períodos atrasados em responder a pontos de viragem. Observe que se m1, o modelo de média móvel simples (SMA) é equivalente ao modelo de caminhada aleatória (sem crescimento). Se m é muito grande (comparável ao comprimento do período de estimação), o modelo SMA é equivalente ao modelo médio. Como com qualquer parâmetro de um modelo de previsão, é costume ajustar o valor de k para obter o melhor quotfitquot aos dados, isto é, os erros de previsão mais pequenos em média. Aqui está um exemplo de uma série que parece apresentar flutuações aleatórias em torno de uma média de variação lenta. Primeiro, vamos tentar ajustá-lo com um modelo de caminhada aleatória, o que equivale a uma média móvel simples de um termo: O modelo de caminhada aleatória responde muito rapidamente às mudanças na série, mas ao fazê-lo ele escolhe grande parte do quotnoise no Dados (as flutuações aleatórias), bem como o quotsignalquot (a média local). Se, em vez disso, tentarmos uma média móvel simples de 5 termos, obtemos um conjunto de previsões mais suaves: A média móvel simples de 5 períodos produz erros significativamente menores do que o modelo de caminhada aleatória neste caso. A idade média dos dados nessa previsão é de 3 ((51) / 2), de modo que ela tende a ficar atrás de pontos de viragem em cerca de três períodos. (Por exemplo, uma desaceleração parece ter ocorrido no período 21, mas as previsões não virar até vários períodos mais tarde.) Observe que as previsões de longo prazo do modelo SMA são uma linha reta horizontal, assim como na caminhada aleatória modelo. Assim, o modelo SMA assume que não há tendência nos dados. No entanto, enquanto as previsões do modelo de caminhada aleatória são simplesmente iguais ao último valor observado, as previsões do modelo SMA são iguais a uma média ponderada de valores recentes. Os limites de confiança calculados pela Statgraphics para as previsões de longo prazo da média móvel simples não se alargam à medida que o horizonte de previsão aumenta. Isto obviamente não é correto Infelizmente, não há nenhuma teoria estatística subjacente que nos diga como os intervalos de confiança devem se ampliar para este modelo. No entanto, não é muito difícil calcular estimativas empíricas dos limites de confiança para as previsões de longo prazo. Por exemplo, você poderia configurar uma planilha na qual o modelo SMA seria usado para prever 2 passos à frente, 3 passos à frente, etc. dentro da amostra de dados históricos. Você poderia então calcular os desvios padrão da amostra dos erros em cada horizonte de previsão e, em seguida, construir intervalos de confiança para previsões de longo prazo adicionando e subtraindo múltiplos do desvio padrão apropriado. Se tentarmos uma média móvel simples de 9 termos, obtemos previsões ainda mais suaves e mais de um efeito retardado: A idade média é agora de 5 períodos ((91) / 2). Se tomarmos uma média móvel de 19 períodos, a idade média aumenta para 10: Observe que, na verdade, as previsões estão agora atrasadas por pontos de inflexão em cerca de 10 períodos. Qual a quantidade de suavização é melhor para esta série Aqui está uma tabela que compara suas estatísticas de erro, incluindo também uma média de 3-termo: Modelo C, a média móvel de 5-termo, rende o menor valor de RMSE por uma pequena margem sobre o 3 E médias de 9-termo, e suas outras estatísticas são quase idênticas. Assim, entre os modelos com estatísticas de erro muito semelhantes, podemos escolher se preferiríamos um pouco mais de resposta ou um pouco mais de suavidade nas previsões. O modelo de média móvel simples descrito acima tem a propriedade indesejável de tratar as últimas k observações igualmente e completamente ignora todas as observações anteriores. (Voltar ao início da página.) Marrons Simples Exponencial Suavização (exponencialmente ponderada média móvel) Intuitivamente, os dados passados devem ser descontados de forma mais gradual - por exemplo, a observação mais recente deve ter um pouco mais de peso que a segunda mais recente, ea segunda mais recente deve ter um pouco mais de peso que a 3ª mais recente, e em breve. O modelo de suavização exponencial simples (SES) realiza isso. Vamos 945 denotar uma constante quotsmoothingquot (um número entre 0 e 1). Uma maneira de escrever o modelo é definir uma série L que represente o nível atual (isto é, o valor médio local) da série, conforme estimado a partir dos dados até o presente. O valor de L no tempo t é calculado recursivamente a partir de seu próprio valor anterior como este: Assim, o valor suavizado atual é uma interpolação entre o valor suavizado anterior e a observação atual, onde 945 controla a proximidade do valor interpolado para o mais recente observação. A previsão para o próximo período é simplesmente o valor suavizado atual: Equivalentemente, podemos expressar a próxima previsão diretamente em termos de previsões anteriores e observações anteriores, em qualquer uma das seguintes versões equivalentes. Na primeira versão, a previsão é uma interpolação entre previsão anterior e observação anterior: Na segunda versão, a próxima previsão é obtida ajustando a previsão anterior na direção do erro anterior por uma fração 945. é o erro feito em Tempo t. Na terceira versão, a previsão é uma média móvel exponencialmente ponderada (ou seja, descontada) com o fator de desconto 1- 945: A versão de interpolação da fórmula de previsão é a mais simples de usar se você estiver implementando o modelo em uma planilha: Célula única e contém referências de células que apontam para a previsão anterior, a observação anterior ea célula onde o valor de 945 é armazenado. Observe que, se 945 1, o modelo SES é equivalente a um modelo de caminhada aleatória (sem crescimento). Se 945 0, o modelo SES é equivalente ao modelo médio, assumindo que o primeiro valor suavizado é definido igual à média. A idade média dos dados na previsão de suavização exponencial simples é de 1/945 em relação ao período para o qual a previsão é calculada. (Isso não é suposto ser óbvio, mas pode ser facilmente demonstrado através da avaliação de uma série infinita.) Portanto, a previsão média móvel simples tende a ficar para trás de pontos de viragem em cerca de 1/945 períodos. Por exemplo, quando 945 0,5 o atraso é 2 períodos quando 945 0,2 o atraso é 5 períodos quando 945 0,1 o atraso é de 10 períodos, e assim por diante. Para uma determinada idade média (isto é, a quantidade de atraso), a previsão de suavização exponencial simples (SES) é um pouco superior à previsão de média móvel simples (SMA) porque coloca relativamente mais peso na observação mais recente - ie. É ligeiramente mais quotresponsivequot às mudanças que ocorrem no passado recente. Por exemplo, um modelo SMA com 9 termos e um modelo SES com 945 0,2 têm uma idade média de 5 para os dados nas suas previsões, mas o modelo SES coloca mais peso nos últimos 3 valores do que o modelo SMA e no modelo SMA. Outra vantagem importante do modelo SES sobre o modelo SMA é que o modelo SES usa um parâmetro de suavização que é continuamente variável, de modo que pode ser facilmente otimizado Usando um algoritmo quotsolverquot para minimizar o erro quadrático médio. O valor óptimo de 945 no modelo SES para esta série revela-se 0.2961, como mostrado aqui: A idade média dos dados nesta previsão é de 1 / 0.2961 3.4 períodos, que é semelhante ao de um 6-termo simples de movimento média. As previsões a longo prazo do modelo SES são uma linha reta horizontal. Como no modelo SMA eo modelo de caminhada aleatória sem crescimento. No entanto, note que os intervalos de confiança calculados por Statgraphics agora divergem de uma forma razoavelmente aparente, e que eles são substancialmente mais estreitos do que os intervalos de confiança para o modelo de caminhada aleatória. O modelo SES assume que a série é um tanto mais previsível do que o modelo de caminhada aleatória. Um modelo SES é realmente um caso especial de um modelo ARIMA. De modo que a teoria estatística dos modelos ARIMA fornece uma base sólida para o cálculo de intervalos de confiança para o modelo SES. Em particular, um modelo SES é um modelo ARIMA com uma diferença não sazonal, um termo MA (1) e nenhum termo constante. Também conhecido como um modelo quimétrico ARIMA (0,1,1) sem constantequot. O coeficiente MA (1) no modelo ARIMA corresponde à quantidade 1-945 no modelo SES. Por exemplo, se você ajustar um modelo ARIMA (0,1,1) sem constante à série aqui analisada, o coeficiente MA estimado (1) resulta ser 0,7029, que é quase exatamente um menos 0,2961. É possível adicionar a hipótese de uma tendência linear constante não-zero para um modelo SES. Para isso, basta especificar um modelo ARIMA com uma diferença não sazonal e um termo MA (1) com uma constante, ou seja, um modelo ARIMA (0,1,1) com constante. As previsões a longo prazo terão então uma tendência que é igual à tendência média observada ao longo de todo o período de estimação. Você não pode fazer isso em conjunto com o ajuste sazonal, porque as opções de ajuste sazonal são desativadas quando o tipo de modelo é definido como ARIMA. No entanto, você pode adicionar uma tendência exponencial de longo prazo constante a um modelo de suavização exponencial simples (com ou sem ajuste sazonal) usando a opção de ajuste de inflação no procedimento de Previsão. A taxa adequada de inflação (crescimento percentual) por período pode ser estimada como o coeficiente de declive num modelo de tendência linear ajustado aos dados em conjunto com uma transformação de logaritmo natural, ou pode basear-se em outras informações independentes relativas a perspectivas de crescimento a longo prazo . (Retornar ao início da página.) Browns Linear (ie double) Suavização exponencial Os modelos SMA e SES assumem que não há nenhuma tendência de qualquer tipo nos dados (que geralmente é OK ou pelo menos não muito ruim para 1- Antecipadamente quando os dados são relativamente ruidosos) e podem ser modificados para incorporar uma tendência linear constante como mostrado acima. O que acontece com as tendências a curto prazo Se uma série exibe uma taxa variável de crescimento ou um padrão cíclico que se destaque claramente contra o ruído, e se houver uma necessidade de prever mais de um período à frente, a estimativa de uma tendência local também pode ser um problema. O modelo de suavização exponencial simples pode ser generalizado para obter um modelo de suavização exponencial linear (LES) que calcula estimativas locais de nível e tendência. O modelo de tendência de variação de tempo mais simples é o modelo de alisamento exponencial linear de Browns, que usa duas séries suavizadas diferentes que são centradas em diferentes pontos no tempo. A fórmula de previsão é baseada em uma extrapolação de uma linha através dos dois centros. (Uma versão mais sofisticada deste modelo, Holt8217s, é discutida abaixo.) A forma algébrica do modelo de suavização exponencial linear de Brown8217s, como a do modelo de suavização exponencial simples, pode ser expressa em um número de formas diferentes mas equivalentes. A forma quotstandard deste modelo é usualmente expressa da seguinte maneira: Seja S a série de suavização simples obtida pela aplicação de suavização exponencial simples à série Y. Ou seja, o valor de S no período t é dado por: (Lembre-se que, sob simples Exponencial, esta seria a previsão para Y no período t1.) Então deixe Squot denotar a série duplamente-alisada obtida aplicando a suavização exponencial simples (usando o mesmo 945) à série S: Finalmente, a previsão para Y tk. Para qualquer kgt1, é dada por: Isto produz e 1 0 (isto é, enganar um pouco e deixar a primeira previsão igual à primeira observação real) e e 2 Y 2 8211 Y 1. Após o que as previsões são geradas usando a equação acima. Isto produz os mesmos valores ajustados que a fórmula baseada em S e S se estes últimos foram iniciados utilizando S 1 S 1 Y 1. Esta versão do modelo é usada na próxima página que ilustra uma combinação de suavização exponencial com ajuste sazonal. Holt8217s Linear Exponential Smoothing Brown8217s O modelo LES calcula estimativas locais de nível e tendência ao suavizar os dados recentes, mas o fato de que ele faz isso com um único parâmetro de suavização coloca uma restrição nos padrões de dados que é capaz de ajustar: o nível ea tendência Não são permitidos variar em taxas independentes. Holt8217s modelo LES aborda esta questão, incluindo duas constantes de alisamento, um para o nível e um para a tendência. Em qualquer momento t, como no modelo Brown8217s, existe uma estimativa L t do nível local e uma estimativa T t da tendência local. Aqui eles são calculados recursivamente a partir do valor de Y observado no tempo t e as estimativas anteriores do nível e tendência por duas equações que aplicam alisamento exponencial para eles separadamente. Se o nível estimado ea tendência no tempo t-1 são L t82091 e T t-1. Respectivamente, então a previsão para Y tshy que teria sido feita no tempo t-1 é igual a L t-1 T t-1. Quando o valor real é observado, a estimativa atualizada do nível é calculada recursivamente pela interpolação entre Y tshy e sua previsão, L t-1 T t-1, usando pesos de 945 e 1-945. A mudança no nível estimado, Nomeadamente L t 8209 L t82091. Pode ser interpretado como uma medida ruidosa da tendência no tempo t. A estimativa actualizada da tendência é então calculada recursivamente pela interpolação entre L t 8209 L t82091 e a estimativa anterior da tendência, T t-1. Usando pesos de 946 e 1-946: A interpretação da constante de alisamento de tendência 946 é análoga à da constante de alisamento de nível 945. Modelos com valores pequenos de 946 assumem que a tendência muda apenas muito lentamente ao longo do tempo, enquanto modelos com Maior 946 supor que está mudando mais rapidamente. Um modelo com um 946 grande acredita que o futuro distante é muito incerto, porque os erros na tendência-estimativa tornam-se completamente importantes ao prever mais de um período adiante. As constantes de suavização 945 e 946 podem ser estimadas da maneira usual, minimizando o erro quadrático médio das previsões de 1 passo à frente. Quando isso é feito em Statgraphics, as estimativas se tornam 945 0,3048 e 946 0,008. O valor muito pequeno de 946 significa que o modelo assume muito pouca mudança na tendência de um período para o outro, então basicamente este modelo está tentando estimar uma tendência de longo prazo. Por analogia com a noção de idade média dos dados que é usada na estimativa do nível local da série, a idade média dos dados que é usada na estimativa da tendência local é proporcional a 1/946, embora não exatamente igual a isto. Neste caso, isto é 1 / 0.006 125. Este número é muito preciso, na medida em que a precisão da estimativa de 946 é realmente de 3 casas decimais, mas é da mesma ordem geral de magnitude que o tamanho da amostra de 100 , Assim que este modelo está calculando a média sobre bastante muita história em estimar a tendência. O gráfico de previsão abaixo mostra que o modelo LES estima uma tendência local ligeiramente maior no final da série do que a tendência constante estimada no modelo SEStrend. Além disso, o valor estimado de 945 é quase idêntico ao obtido pelo ajuste do modelo SES com ou sem tendência, de modo que este é quase o mesmo modelo. Agora, eles parecem previsões razoáveis para um modelo que é suposto estar estimando uma tendência local Se você 8220eyeball8221 esse enredo, parece que a tendência local virou para baixo no final da série O que aconteceu Os parâmetros deste modelo Foram estimados minimizando o erro quadrático das previsões de um passo à frente, e não as previsões a mais longo prazo, caso em que a tendência não faz muita diferença. Se tudo o que você está olhando são 1-passo-frente erros, você não está vendo a imagem maior de tendências sobre (digamos) 10 ou 20 períodos. A fim de obter este modelo mais em sintonia com a nossa extrapolação do globo ocular dos dados, podemos ajustar manualmente a tendência de suavização constante para que ele usa uma linha de base mais curto para a estimativa de tendência. Por exemplo, se escolhemos definir 946 0,1, então a idade média dos dados usados na estimativa da tendência local é de 10 períodos, o que significa que estamos fazendo uma média da tendência ao longo dos últimos 20 períodos aproximadamente. Here8217s o que o lote de previsão parece se ajustarmos 946 0.1 mantendo 945 0.3. Isso parece intuitivamente razoável para esta série, embora seja provavelmente perigoso para extrapolar esta tendência mais de 10 períodos no futuro. E sobre as estatísticas de erro Aqui está uma comparação de modelos para os dois modelos mostrados acima, bem como três modelos SES. O valor ótimo de 945 para o modelo SES é de aproximadamente 0,3, mas resultados semelhantes (com ligeiramente mais ou menos responsividade, respectivamente) são obtidos com 0,5 e 0,2. (A) Holts linear exp. Alisamento com alfa 0,3048 e beta 0,008 (B) Holts linear exp. Alisamento com alfa 0,3 e beta 0,1 (C) Alisamento exponencial simples com alfa 0,5 (D) Suavização exponencial simples com alfa 0,3 (E) Alisamento exponencial simples com alfa 0,2 Suas estatísticas são quase idênticas, portanto, realmente não podemos fazer a escolha com base De erros de previsão de 1 passo à frente dentro da amostra de dados. Temos de recorrer a outras considerações. Se acreditarmos firmemente que faz sentido basear a estimativa de tendência atual sobre o que aconteceu nos últimos 20 períodos, podemos fazer um caso para o modelo LES com 945 0,3 e 946 0,1. Se quisermos ser agnósticos quanto à existência de uma tendência local, então um dos modelos SES pode ser mais fácil de explicar e também fornecerá mais previsões de médio-caminho para os próximos 5 ou 10 períodos. Evidências empíricas sugerem que, se os dados já tiverem sido ajustados (se necessário) para a inflação, então pode ser imprudente extrapolar os resultados lineares de curto prazo Muito para o futuro. As tendências evidentes hoje podem afrouxar no futuro devido às causas variadas tais como a obsolescência do produto, a competição aumentada, e os abrandamentos cíclicos ou as ascensões em uma indústria. Por esta razão, a suavização exponencial simples geralmente desempenha melhor fora da amostra do que poderia ser esperado, apesar da sua extrapolação de tendência horizontal quotnaivequot. Modificações de tendência amortecida do modelo de suavização exponencial linear também são freqüentemente usadas na prática para introduzir uma nota de conservadorismo em suas projeções de tendência. O modelo LES com tendência a amortecimento pode ser implementado como um caso especial de um modelo ARIMA, em particular, um modelo ARIMA (1,1,2). É possível calcular intervalos de confiança em torno de previsões de longo prazo produzidas por modelos exponenciais de suavização, considerando-os como casos especiais de modelos ARIMA. A largura dos intervalos de confiança depende de (i) o erro RMS do modelo, (ii) o tipo de suavização (simples ou linear) (iii) o valor (S) da (s) constante (s) de suavização e (iv) o número de períodos que você está prevendo. Em geral, os intervalos se espalham mais rapidamente à medida que o 945 se torna maior no modelo SES e eles se espalham muito mais rápido quando se usa linear em vez de alisamento simples. Este tópico é discutido mais adiante na seção de modelos ARIMA das notas. (Voltar ao início da página.) Ao calcular uma média móvel em execução, colocar a média no período de tempo médio faz sentido No exemplo anterior, calculamos a média dos três primeiros períodos de tempo e colocamos próximo ao período 3. Poderíamos ter Colocou a média no meio do intervalo de tempo de três períodos, ou seja, próximo ao período 2. Isso funciona bem com períodos de tempo ímpar, mas não é tão bom para mesmo períodos de tempo. Então, onde colocamos a primeira média móvel quando M 4 Tecnicamente, a Média Móvel cairá em t 2,5, 3,5. Para evitar esse problema, suavizamos as MAs usando M 2. Assim, suavizamos os valores suavizados Se formos uma média de um número par de termos, precisamos suavizar os valores suavizados A tabela a seguir mostra os resultados usando M 4.A série de tempo é uma seqüência Das observações de uma variável aleatória periódica. Exemplos disso são a demanda mensal por um produto, a matrícula anual de calouros em um departamento da universidade e os fluxos diários em um rio. As séries cronológicas são importantes para a pesquisa operacional, porque muitas vezes são os impulsionadores dos modelos de decisão. Um modelo de inventário requer estimativas de demandas futuras, um planejamento de curso e modelo de pessoal para um departamento universitário requer estimativas de entrada de estudantes futuros e um modelo para fornecer avisos para a população em uma bacia hidrográfica requer estimativas de fluxos de rios para o futuro imediato. A análise de séries temporais fornece ferramentas para selecionar um modelo que descreve as séries temporais e usar o modelo para prever eventos futuros. Modelar a série temporal é um problema estatístico porque os dados observados são usados em procedimentos computacionais para estimar os coeficientes de um suposto modelo. Os modelos assumem que as observações variam aleatoriamente sobre um valor médio subjacente que é uma função do tempo. Nessas páginas, restringimos a atenção ao uso de dados históricos de séries temporais para estimar um modelo dependente do tempo. Os métodos são apropriados para a previsão automática e de curto prazo de informações freqüentemente usadas onde as causas subjacentes da variação do tempo não estão mudando marcadamente no tempo. Na prática, as previsões derivadas por esses métodos são posteriormente modificadas por analistas humanos que incorporam informações não disponíveis a partir dos dados históricos. Nosso propósito principal nesta seção é apresentar as equações para os quatro métodos de previsão usados no suplemento Forecasting: média móvel, suavização exponencial, regressão e suavização exponencial dupla. Estes são chamados de métodos de suavização. Métodos não considerados incluem a previsão qualitativa, regressão múltipla, e métodos autorregressivos (ARIMA). Aqueles interessados em uma cobertura mais ampla devem visitar o site Previsões Princípios ou ler um dos vários excelentes livros sobre o tema. Usamos o livro Previsão. Por Makridakis, Wheelwright e McGee, John Wiley amp Sons, 1983. Para usar o pasta de trabalho Exemplos do Excel, você deve ter o suplemento de Previsão instalado. Escolha o comando Relink para estabelecer os links para o suplemento. Esta página descreve os modelos utilizados para previsão simples e a notação utilizada para a análise. Este método de previsão mais simples é a previsão média móvel. O método simplesmente médias das últimas m observações. É útil para séries temporais com uma média em mudança lenta. Este método considera todo o passado na sua previsão, mas pesa a experiência recente mais fortemente do que menos recente. Os cálculos são simples porque apenas a estimativa do período anterior e os dados atuais determinam a nova estimativa. O método é útil para séries temporais com uma média em mudança lenta. O método da média móvel não responde bem a uma série temporal que aumenta ou diminui com o tempo. Aqui nós incluímos um termo de tendência linear no modelo. O método de regressão aproxima o modelo construindo uma equação linear que fornece o ajuste de mínimos quadrados às últimas m observações. Page 6 6 Embora os métodos ad hoc de suavização exponencial (ES) tenham sido empregados há muitas décadas, desenvolvimentos metodológicos recentes têm incorporado Modelos em um modelo dinâmico não-linear moderno. Hyndman, Koehler, et ai. (2002, A State Space Framework for Automatic Forecasting Using Exponential Smoothing Methods, International Journal of Forecasting, 18, 439454) descrevem a estrutura ETS (E rror-T rend-Sasonal ou E xponen T ial S moothing) Classe de métodos ES e oferece uma base teórica para a análise desses modelos usando cálculos de verossimilhança baseado no estado-espaço, com suporte para seleção de modelo e cálculo de erros padrão de previsão. Nomeadamente, a estrutura ETS engloba os modelos ES padrão (por exemplo, o método Holt e HoltWinters e métodos multiplicativos), de modo que proporciona uma base teórica para o que era anteriormente uma colecção de abordagens ad hoc. O EViews 8 fornece a suavização exponencial ETS como um procedimento embutido. Abaixo mostramos um exemplo de utilização de ETS em EViews. Para ilustrar a estimativa e o alisamento usando um modelo ETS, projetamos o início mensal das moradias (HS) para o período 1985m011988m12. Esses dados são fornecidos no arquivo de trabalho hs. wf1. Usaremos o modelo de erro multiplicativo, tendência aditiva e modelo sazonal multiplicativo (M, A, M) para estimar parâmetros usando dados de 1959m011984m12 e para alisar e prever para 1985m11988m12. Primeiro, carregue o arquivo de trabalho, abra a série HS e selecione Pro / Exponential Smoothing / ETS Exponential Smoothing. Altere os menus suspensos Especificação do modelo para (M, A, M), defina a amostra de estimativa como 1959 1984 ou 1959m01 1984m12, defina o ponto final da previsão como 1988m04 e deixe as configurações restantes em seus valores padrão. Quando você clica em OK. EViews estima o modelo ETS, exibe os resultados e salva os resultados suavizados na série HSSM no arquivo de trabalho. Os resultados são divididos em quatro partes. A primeira parte da tabela mostra as definições utilizadas no procedimento ETS, incluindo a amostra utilizada para a estimativa e o estado de estimativa. Aqui vemos que estimamos um modelo (M, A, M) usando dados de 1959 a 1984, e que o estimador convergeu, mas com alguns parâmetros em valores limite. A próxima seção da tabela mostra os parâmetros de suavização (,,) e estados iniciais x 0 (l 0. B 0. S 0. S -1. S -11). Observe a presença dos valores de limite zero para e, que indicam que os componentes sazonais e de tendência não mudam de seus valores iniciais. A parte inferior do resultado da tabela contém estatísticas resumidas para o procedimento de estimativa: A maioria destas estatísticas são auto-explicativas. A relatada Log-likelihood é simplesmente o log-verossimilhança valor ausente inessencial constantes, e é fornecido para facilitar a comparação com os resultados obtidos a partir de outras fontes. Para fins de comparação, pode ser útil considerar o modelo ETS obtido usando a seleção do modelo. Para executar a seleção do modelo, preencha a caixa de diálogo como antes, mas defina cada um dos menus suspensos Especificação do modelo como Auto. Note que nas configurações padrão, o melhor modelo será selecionado usando o Critério de Informações Akaike. Em seguida, clique na guia Opções e defina as opções de Exibição para mostrar a previsão e todos os elementos da decomposição em Vários gráficos e para produzir gráficos e tabelas para as comparações de previsão e de verossimilhança de todos os modelos considerados pela seleção do modelo procedimento. Clique em OK para executar a suavização. Como o EViews produzirá vários tipos de saída para o procedimento, os resultados serão exibidos em um spool: O painel de saída esquerdo permite que você selecione a saída que deseja exibir. Basta clicar na saída que deseja exibir ou usar a barra de rolagem no lado direito da janela para passar da saída para a saída. A Saída de Estimação contém a especificação, o alisamento estimado e os parâmetros iniciais e as estatísticas de resumo. A parte superior da saída mostra que o modelo de ETS de critério de informação Akaike selecionado é uma especificação (M, N, M), com estimativa de parâmetro de suavização de nível 0,72 e o parâmetro estacional 0 estimado no limite. As estatísticas de resumo indicam que esta especificação é superior ao modelo anterior (M, A, M), com base em todos os três critérios de informação eo erro médio quadrático médio, embora a probabilidade seja menor eo SSR eo RMSE são ambos Ligeiramente maior no modelo selecionado. Clicando no gráfico de comparação AIC no spool, vemos os resultados para todos os modelos candidatos: Note que o modelo selecionado (M, N, M) eo modelo original (M, A, M) estão entre as cinco especificações com AIC relativamente baixo Valores. O gráfico de comparação de previsão mostra as previsões para os modelos candidatos: O gráfico mostra as últimas observações das previsões na amostra e as previsões fora da amostra para cada uma das possíveis especificações ETS. Além disso, nossas configurações de exibição ETS escolhidas produziram tanto a tabela de verossimilhança que contém os valores reais de probabilidade e Akaike para cada especificação, quanto a tabela de comparação de previsão, que apresenta um subconjunto dos valores exibidos no gráfico. Por fim, o spool contém um gráfico múltiplo contendo os valores reais e previstos do HS sobre o período de estimativa e previsão, juntamente com a decomposição da série no nível e componentes sazonais. Para informações de vendas, por favor envie um e-mail para saleseviews Para suporte técnico envie um email para supporteviews Inclua seu número de série com toda a correspondência de e-mail. Para obter informações de contato adicionais, consulte nossa página Sobre.
Comments
Post a Comment